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Abstract: Electromyography (EMG) sensors have been used for measuring muscle signals and for
diagnosing neuromuscular disease. Available commercial EMG sensor are expensive and not easily
available for individuals. The aim of the study is to validate our designed low-cost sensor against a
well-known commercial system for measuring muscle activity and fatigue assessment. The evaluation
of the designed system was done through a series of dynamic exercises performed by volunteers.
Our low-cost EMG sensor and the commercially available system were placed on the vastus lateralis
muscle to concurrently record the signal in a maximum voluntary contraction (MVC). The signal
analysis was done using two validation indicators: Spearman’s correlation, and intra-class cross
correlation on SPSS 26.0 version. For the muscle fatigue assessment, the root mean square (RMS),
mean absolute value (MAV) and mean frequency (MNF) indicators were used. The results at the
peak and mean level muscle contraction intensity were computed. The relative agreement for the
two systems was excellent at peak level muscle contraction range (ICC 0.74–0.92), average 0.83
and mean level muscle contraction intensity range (ICC 0.65–0.85) with an average of 0.74. The
Spearman’s correlation average was 0.76 with the range of (0.71–0.85) at peak level contraction,
whiles the mean level contraction average was 0.71 at a range of (0.62–0.81). In determining muscle
fatigue, the RMS and MAV showed increasing values in the time domain, while the MEF decreased
in the frequency domain. Overall, the results indicated a good to excellent agreement of the two
systems and confirmed the reliability of our design. The low-cost sensor also proved to be suitable
for muscle fatigue assessment. Our designed system can therefore be implemented for rehabilitation,
sports science, and ergonomics.

Keywords: electromyography; low-cost sensor; muscle contraction; fatigue assessment

1. Introduction

An electromyography (EMG) sensor can provide information for muscular activity [1–3]
and is used in clinical settings for diagnosing neuromuscular diseases. EMG sensors are
used in research fields, such as ergonomics, sports science, and physiotherapy. The sensor
measures the contraction of the muscle activity during physical exercise. The signals
recorded from EMG sensors are non-periodic and continuous, which are generated by the
skeletal muscles of the human body. The motor neurons cause the contraction of the muscle,
which is responsible for movement. The muscle movement creates a depolarization, which
is useful in assessing muscle stress and control. EMG sensors could be invasive or non-
invasive, where invasive sensors are more accurate and with less noise compared to non-
invasive sensors. Presently, there are some non-invasive commercial sensors in the market,
which are expensive and may not be readily available for individuals. There has been some
research in the design of a low-cost EMG sensor for clinical usage. Most of the designed
low-cost EMG systems were stationary connected to computer ports. As mentioned above,
earlier designed low-cost EMG sensors did not provide a standalone application that could
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be used to monitor and record muscle signals. In the recent past, some researchers have
developed low-cost EMG sensors which were applied in different fields. Beneteau et al. [4]
designed an inexpensive wireless surface EMG sensor using a MSP430 microcontroller
to record the lower arm muscle signal. The electromyogram features extracted from the
designed system were used for pattern recognition. Wu et al. [5], designed a low-cost
surface EMG sensor to recognize hand motion. The EMG system, miniaturized, had a
wireless communication module to transmit the signal. Supuk et al. [6] presented a low-
cost surface EMG sensor to record the muscle activities in a gait assessment. This method
employed by the authors could be used to determine weak muscles. Surface EMG sensors
are very useful for determining the strength of a muscle. Muscle fatigue can simply be
described as the decline of muscle maximum force during contraction [7]. Muscle fatigue
could occur in the cell of the muscle fiber or the nervous system. Currently, there are some
methods which can be employed to detect muscle fatigue [8]. A surface electromyography
sensor can be used to record the muscle function and electric muscle signal to detect muscle
fatigue. This is performed by measuring the power or force measurement of muscle during
maximal voluntary contractions (MVCs).

Some studies in the past have attempted to validate low-cost electromyography sensors
with commercial-based systems. Heywood et al. [9] presented the validity of a fabricated
low-cost EMG sensor on a microchip with a commercial system for dynamic contraction.
The commercial device and the designed low-cost sensor were placed on the vastus lateralis
muscle of volunteers performing different exercises. The signals were evaluated by means
of a Teager–Kaiser energy operator (TKEO) and maximal voluntary contraction (MVC) of
the muscle. The results indicated good agreement between the signal output of the two sys-
tems and the reliability of the low-cost sensor for measuring muscle activity. The inter-tester
and intra-session were seen to be excellent with a peak contraction intensity (ICC > 0.99).
Fuentes et al. [10] presented the validation of a designed low-cost EMG sensor with a
commercial Delsys system. In the study, the authors used four validation indicators to
estimate the similarity between the output signals of the two systems. Validation indicators
used were Spearman’s correlation, linear correlation coefficient (LCC), cross-correlation
coefficient (CCC) and energy ratio of the signal. The Spearman’s correlation had 0.60 as
the average. The result showed an excellent agreement between the designed low-cost
system and the commercial system. However, the limitation of this design system had to
do with the noise of the hardware components and delay of the signal. Another study by
Fuentes et al. [11], presented the validation of a low-cost surface EMG device for measuring
muscle fatigue. In the study, 28 volunteers were prepared for a palpation test, where the
designed low-cost sensor and commercial system were placed on the rectus femoris muscle.
The mean absolute value (MAV), root mean square (RMS) and mean frequency (MNF)
were used to evaluate muscle fatigue from the recorded signal. The results indicated that
the low-cost EMG sensor can be used to determine muscle fatigue. Alejandro et al. [12]
illustrated the validity of the mDurance system for measuring muscles activities by com-
paring it with a commercial sensor. In the study, volunteers were tested during isokinetic
exercise at different speeds to determine the maximal voluntary contraction. The results
indicated an excellent correlation of the vastus lateralis at (ICC > 0.81) and rectus femerois
at (ICC > 0.76). This proved that mDurance is a valid tool for measuring muscle activity
during dynamic contraction at different speeds. Jang et al. [13] demonstrated the reliability
of a newly developed surface EMG sensor with a convectional EMG sensor during the
voluntary isometric contraction exercise. The authors tested the newly designed surface
electromyography device (PSL-EMG-Trl) with a convectional surface electromyography
device (BTS-FREEMG1000). The signals obtained from the rectus femoris (RF) and biceps
brachii (BB) muscles were compared using Pearson’s correlation. The results indicated
an excellent agreement with a high reliability for BB at range (ICC = 0.832–0.937) and RF
at range (ICC = 0.814–0.957). This showed that the newly developed EMG device was
effective for monitoring muscle activities during dynamic exercises.
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Although some researchers have attempted to validate low-cost EMG sensors, the re-
liability of these sensors still have some challenges to be addressed. To the best of our
knowledge, there is no study that has combined the validation of a low-cost sensor and its
feasibility for fatigue muscle assessment. The novelty of this study is to test the reliability
of our designed low-cost EMG sensor (MyoTracker) for measuring muscle activity and for
determining muscle fatigue. This would be done by comparing it with a commercially
available Delsys system.

2. Materials and Methods

The experimental procedure involved the capturing of muscle signal from the two
devices concurrently. The first device was the newly designed low-cost EMG sensor
(MyoTracker), and the second device was the commercial Trigno Avanti sensor from Delsys.
The commercial system served as the gold-standard tool for measuring muscle signals.

2.1. Experiment Participants

In total, 7 participants were recruited for the study, and comprised 5 males and 2 fe-
males. The participants had no physical injury or any known deformity. The characteristics
of the participants were as follows: age 25 ± 7 years, height 175 ± 2.8 cm, weight 72.4 ± 5.6 kg.
The ethical approval was granted by the appropriate ethical committee. All the participants
were given a consent form to sign prior to being recruited for the study. Participants were
given an opportunity to withdraw from the study at any time without explanation.

2.2. Experiment Procedure

The experiment steps required to complete the exercises in Table 1 were explained
to each of the participants. A demonstration was given first before they were prepared to
conduct the exercises. Step 1: The risks involved in the study were explicitly explained
to participants. A participant information sheet, which contains all information on the
study, was given to the volunteers. Step 2: Participants filled in a questionnaire to collect
information, such as their age, height, and weight. Step 3: Participants were prepared
before placing the sensors on the vastus lateralis muscle. The hair on the skin was shaved
and cleaned with muslin. This was done to minimize the interference from skin artifacts
and remove dirt to give the sensors accurate readings. Our designed low-cost sensor and
the commercial system were placed on the same region of the vastus lateralis muscle at
2 cm apart.

Table 1. Methodology for the exercises.

Exercise Instructions Duration Order

Frankenstein walk

Individual stands with legs together and one arm
extended, steps to kick the opposite leg straight
then stretches right arm. Then individual steps
forward while repeating step.

120 (s)
First exercise was the pre-
trial, this was then followed
by two trials recorded.

Band Sidewalk

An elastic band is place between the ankles of the
subjects. Participants stand upright and bend a
little downward at knee at 60-degree angle while
holding their waist. Participants then perform a
sidewalk on the left and right leg.

120 (s)

First was the pre-trial stage,
and then two-trials in a single
lap with steps on each side of
the legs in a sidewalk.

Wall sit

Individual participants lean against a wall with
their feet planted firmly on the ground with feet 10
inches apart. The participants were asked to slide
slowly down and then upward.

120 (s)
First exercise was the pre-
trial, and then two trials of
step down and up.

Squat
Participants from a standing position lower their
hips from the standing position and back to stand-
ing position at a comfortable speed.

120 (s)
First pre-trial of squat and
then two trials of squat at
fast speed.
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2.3. Equipment for Muscle Signal Collection

The equipment for the study were the newly designed low-cost EMG sensor and the
commercial based Trigno Avanti system from Delsys in Table 2. The low-cost sensor was
designed using off the shelf hardware components, such as Arduino Uno, Myoware mod-
ule,and HC-05 Bluetooth, to provide a wireless connection. An alkaline battery was used
to provide power to the designed system. The Myoware sensor module was designed to
output raw and envelop signal from the component manufacturers. The second equipment
was the commercial non-invasive sensor from Delsys. The sensor electrodes were placed
parallel to each other on a vastus lateralis muscle with a 2 cm distance. After the first
trial, the sensors were interchanged for the second trial while still maintaining the 2 cm
distance apart.

The vastus lateralis muscle shown in Figure 1 of the musculoskeletal system.

Figure 1. The vastus lateralis muscle.

Table 2 shows the technical features of both the designed low-cost EMG sensor and
the Trigno Avanti EMG sensor [14].

Table 2. Technical specification of the two systems.

Parameters Low-Cost Sensor (MyoTracker) Commercial Trigno Avanti Sensor

Image

Price $150 $12,000
Dimensions (mm) MyoWare 52.9 × 20.7 × 5.1 27 × 37 × 13

Weight (g) Built EMG System 56.5 14.0
Channels 1 channel 1× EMG, up to 6× IMU

Bandwidth (Hz) 10–400 10–850 or 20–450
Gain (V/V) 201Rgain/1 kOhm 300

Sampling rate (Hz) 333 1111 up to 2000
Common Mode Rection Ratio (dB) 110 >80

Operating Voltage (mV) 3.3–5 11
Contact electrode Silver/Silver-chloride 99.9 silver

Output mode EMG Enveloped/Raw EMG Raw EMG
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2.4. Data Processing and Analysis

EMGworks software [15] from Delsys was used for the signal processing. The software
is a powerful tool for advanced research with a user-friendly interface for data analysis
of EMG signals. After all the exercises were completed by the 7 participants, the signals
from the two devices were saved on a csv file. This was exported to EMGworks for the
signal processing. The analysis method adopted for this study was a combination of the
methodology used by Heywood et al. [9] and Duffour et al. [16]. The steps are outlined
as follows:

Step 1: The EMG signals obtained from the two systems were processed. This involved
signal synchronization, filtering of the raw EMG signal and trimming. Filtering was done
to denoise the raw signals from the two systems. The EMG signals were then rectified
and enveloped.

Step 2: The computation of maximal voluntary contraction and normalization of
the signals obtained from exercises conducted. MVC was calculated for every exercise
performed by the participants in the study.

Step 3: The validation indicators were used for the signals obtained from the devices.
The validation indicators compared the signals obtained for the two systems using SPSS
version 26 package.

2.4.1. Signal Filtering Process

We denoise the signals from the two devices separately by conducting different sig-
nal filtration for each device. The first signal filtering with the commercial system was
done with the band pass Butterworth at 20–450 Hz, order 4. This is because a study by
Wei et al. [17] illustrated that the EMG signal is known to be appropriate at 40–400 Hz.
On the other hand, our designed low-cost EMG sensor was filtered using bandpass Butter-
worth at 45–55 Hz. The low-cost system can cater for the noise, which is centered around
50 Hz. A notch filter was included to remove the power line noise from the sensor.

2.4.2. Signal Synchronization, Rectification and Trimming

The synchronization of the signals from the low-cost sensor and commercial sensor
were overlapped for the exercises conducted by each participant. After the synchronization
process, the signals were then trimmed to 44 s. The signals for the commercial device were
then rectified using absolute mean values.

2.4.3. Maximal Voluntary Contraction (MVC)

The maximal voluntary contraction occurred during the exercises performed by par-
ticipants. The MVC values were computed for the two systems in the exercises conducted.
The computation was done from the root mean square signal at the peak and mean levels
for both systems.

The raw EMG signal is shown in Figure 2 and the filtered EMG signal is shown in
Figure 3. The filtering of the noise was done using the band pass filter.

Figure 2. Raw EMG signal.
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Figure 3. Filtered EMG signal.

The signal amplitude graph for the commercial system is shown in Figure 4, while the
signal from the low-cost is shown in Figure 5

Figure 4. Commercial system.

Figure 5. Low-cost system.

Figure 6 shows the synchronization of the signal between the two systems. Two
validation indicators were used to achieve a successful evaluation of the designed low-cost
sensor. The validators used were the Spearman’s correlation and the intra-class correlation
coefficient (ICC). The Spearman’s correlation was used to measure the correlation between the
signal of the low-cost sensor and the commercial system. The correlation can move between
−1 and 1, where 1 indicates a positive correlation and −1 indicates a negative correlation.
This can be mathematically expressed in Equation (1) as

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(1)
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where di represents the difference between the two ranks in each observation, and n is the
number of observations.

Figure 6. Synchronization of the two systems.

Intra-class correlation coefficient (ICC): The intra-class correlation coefficient was used
to measure the relatedness and similarity between the signals of the two systems. This can
be expressed in Equation (2) as,

ICC =
S2

b
(S2

b + S2
w)

(2)

S2
b represents the cluster variance whiles S2

w represents within cluster variance.

2.5. Noise from Low-Cost System

Our designed low-cost EMG sensor was prone to some noise. The noise could affect
the fidelity of the muscle signal capture. As the electrical signal travels through the tissues
of the muscle fiber, there is some distortion of the signal. The ambient noise from the
low-cost sensor is due to the electromagnetic radiation, which interferes with the quality
of the signal captured. This is because the human skin surface is inundated with electric–
magnetic radiation that is impossible to avoid. The noise was minimized by using a high
pass filter to remove the distortion of the signal. The noise from the electronic components
of the sensor can also be minimized by using silver chloride electrodes. This technique
reduces the signal-to-noise ratio in the electric cables of the designed system.

The signal-to-noise ratio (SNR) for the low-cost system and the commercial system
were computed. We found the SNR for the commercial system at peak contraction between
40–65 db, while the low-cost was between 10–32 db. The commercial system had a better
SNR, compared to the low-cost sensor.

2.6. Electrode Skin Impedance

Electrode skin impedance is an essential parameter when recording EMG signals.
This is because the electric impedance of the skin can interfere with the quality of the
signal. The electrode skin impedance varies between the participants in the test. The room
temperature for the exercise was 14 degrees Celsius with 76% humidity. This was to ensure
that the participants did not sweat while conducting the exercises. The wet silver–chloride
electrodes placed on the shaved and cleaned skin of the vastus lateralis muscle reduced the
skin impedance. This enhanced the fidelity of the muscle signals captured.

2.7. Statistical Analysis

IBM SPSS statistics v.26 was used in the statistical analysis to compute the intra-class
correlation coefficient and Spearman’s correlation. The reliability for the two systems was
calculated using a single measure of a two-way random model. According to Munro’s
descriptor [18], the reliability coefficient used in indexing the degree of reliability are
(0.90–1.00) very high correlation, (0.70–0.89) high correlation, (0.50–0.69) moderate cor-
relation, (0.26–0.49) low correlation, and (0.00–0.25) little or no correlation. The level of
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agreement between the low-cost sensor and commercial system was examined for each
exercise. Other parameters, such as the mean and standard deviation of signal output, for
the two systems were also computed.

3. Results

In this study, seven participants completed four different exercises to test the validity
of the newly designed low-cost EMG sensor. We tested for the reliability of our designed
low-cost sensor for measuring muscle activity against the commercial Trigno Avanti sensor.
The maximum voluntary contraction (MVC) values of the two systems were calculated for
the exercises performed. The MVC was assessed at the peak and at the mean level for the
designed low-cost sensor and commercial system. Table 3 shows the maximal voluntary
contraction at peak level for both systems. The absolute agreement (ICC) was found
between the range (0.74–0.92) with an average of 0.83 for the two systems. The minimum
ICC was 0.74, and the maximum ICC was 0.92 at peak level. The Spearman’s correlation
coefficient at the peak level was in the range (0.71–0.85). The average was recorded to be
0.76 for the two systems. At peak level, the minimum value for the Spearman’s correlation
was 0.71 and the maximum was 0.85 for the two systems. For the mean level in Table 4,
the absolute agreement range was (0.65–0.86). The average ICC was recorded to be 0.74
with the minimum at 0.65 and maximum at 0.86 for the two systems. The Spearman’s
correlation coefficient at mean level was between the range of (0.62–0.81) The average
Spearman’s correlation was calculated to be 0.71 with the minimum correlation at 0.62 and
the maximum correlation recorded at 0.81. Other perimeters computed were the mean and
standard deviation of the signal output for the two systems.

Concurrent validity: The absolute agreement (ICC), Spearman’s correlation, the mean
and standard deviation of the two systems at peak level shown in Table 3.

Table 3. Dynamic exercise at peak level.

Exercise
Commercial

Peak
(MVC%)

Low-Cost
Peak

(MVC%)

Relative
Agreement

(ICC)
Spearman

Correlation Mean SD

Frankenstein walk 79 ± 28% 68 ± 31% 0.870 0.740 0.203 0.320
Sidewalk 82 ± 17% 74 ± 20% 0.740 0.720 0.519 0.314
Wall Sit 83 ± 20% 80 ± 16% 0.920 0.850 0.032 0.061
Squats 69 ± 31% 58 ± 30% 0.780 0.710 0.014 0.013

Concurrent validity: The absolute agreement (ICC), Spearman’s correlation, mean and
standard deviation for the commercial system and low-cost sensor at mean level shown in
Table 4.

Table 4. Dynamic exercise at mean level.

Exercise
Commercial

Mean
(MVC%)

Low-Cost
Mean

(MVC%)

Relative
Agreement

(ICC)
Spearman

Correlation Mean SD

Frankenstein walk 63 ± 37% 57 ± 42% 0.860 0.740 0.015 0.011
Sidewalk 74 ± 25% 63 ± 36% 0.670 0.620 0.334 0.336
Wall Sit 76 ± 24% 70 ± 18% 0.780 0.810 0.064 0.063
Squats 65 ± 18% 52 ± 21% 0.650 0.670 0.025 0.031

3.1. Signal Comparison for the Two Systems

The signals recorded from the two systems were processed and then overlapped
together. The amplitude graphs for the low-cost and commercial system for the exercises
conducted are displayed below.

The synchronization of the two systems shown in Figure 7 for Frankenstein walk and
sidewalk shown in Figure 8.
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Figure 7. Amplitude graph of Frankenstein walk.

Figure 8. Amplitude graph of sidewalk.

Synchronization of the two systems in Figure 9 for wall sit and Figure 10 for squat.

Figure 9. Amplitude graph of wall sit.
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Figure 10. Amplitude graph of squat.

3.2. Muscle Fatigue Assessment

The muscle fatigue assessment can be determined by extracting signal features in the
time domain and frequency domain. Fatigue detection in the time domain is estimated
from features such as the root mean square (RMS) and the mean absolute value (MAV).
Knowlont et al. [19] confirmed that an increase in the signal amplitude indicates the pres-
ence of muscle fatigue. Therefore, an increase in the signal of the root mean square and
mean absolute values in the time domain indicate the presence of muscle fatigue, which
can be detected by the low-cost EMG sensor. In the frequency domain, the mean frequency
(MEF) can be combined with the RMS and MAV in the time domain to detect muscle fatigue.
However, in contrast to the indicators used in the time domain, a decrease in the mean
frequency will indicate the presence of muscle fatigue. For illustration, we selected the
Frankenstein walk for the fatigue muscle assessment for the two systems. However, other
exercises performed by participants could also be used for fatigue assessment. The three
indicators used in determining muscle fatigue are expressed in the equations below:

RMS =

√√√√ 1
N

N

∑
i=1

x2 (3)

MAV =
1
N

N

∑
i=1
|xi| (4)

MNF =
∑M

j=1 f jPj

∑M
j=1 Pj

(5)

The graphs below in Figures 11–13 illustrate the indicators used for the fatigue assess-
ment. The root mean square, mean absolute value and mean frequency for the two systems
are displayed in a boxplot.

Figures 11 and 12 illustrate an increase in the RMS and MAV values respectively in
a box plot. Figure 13 also illustrates a decrease in the average frequency over time. All
the above parameters indicate how the vastus lateralis muscle experiences fatigue for
both systems.
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Figure 11. RMS of the systems.

Figure 12. MAV of the systems.
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Figure 13. MEF of the systems.

4. Discussion

We tested the validity of our newly designed low-cost sensor for measuring muscle
activity and determining muscle fatigue. To evaluate the reliability of the designed low-
cost EMG sensor, we recruited seven participants to conduct dynamic exercises. The two
systems were placed on the vastus lateralis muscle for each participant engaging in the
exercises. It is possible to compare the muscle activity between one individual to another;
however, caution must be taken when conducting such a comparison. The muscle contrac-
tion activity varies from one individual to another. The validation indicators used were the
Spearman’s rank correlation coefficient and the intra-class correlation (ICC). Spearman’s
correlation varies from 0 to 1, where 0 indicates that there is no similarity and 1 shows a
very high similarity at 100% for the two systems. The results obtained indicated that there
was a relative and absolute agreement at the peak level of ICC at a range of (0.74–0.92)
for the two systems. The average intra-class correlation at peak level was recorded to be
0.83, which indicated a good to excellent agreement between the two systems. There is a
high degree of reliability for the output signal of the low-cost sensor. Therefore, there is a
significant correlation of our design EMG sensor and the commercial system. Additionally,
at peak level, the Spearman’s correlation was in the range of (0.71–0.85) with an average
of 0.76, which indicates a very good correlation between the two systems. An average of
0.76 Spearman’s correlation shows that there is a very good agreement of the two systems.
At the mean level muscle intensity, the intra-class correlation was (0.65–0.86). The average
correlation of the two systems at mean level was recorded to be 0.74, which indicates good
agreement. The Spearman’s correlation at the mean level was in the range of (0.62–0.81).
The average correlation was found to be 0.71, which shows a good correlation for the two
systems. The association between the two systems shows a good to excellent agreement of
the systems. For the muscular fatigue assessment, we purposely selected the Frankenstein
walk exercise with a series of indicators used to determine the presence of fatigue. The RMS
and MAV shown in Figures 11 and 12, respectively, were used to determine the appearance
of muscle fatigue. An increase in the RMS and MAV of the two systems indicates the
moment that muscle fatigue begins to occur in the time domain. On the contrary, in the
frequency domain, a decrease in the MEF shown in Figure 13 indicates the presence of
muscle fatigue.

Comparing our design validation to previous work in [9,10], we developed an im-
proved low-cost sensor which allows users to remotely connect their mobile devices to the
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sensor. Users are able to view muscle signals on a mobile app in real time. The results from
our validation had a higher correlation when compared to the work conducted by Jang
et al. [13]. Again, our designed system employed some techniques to minimize the noise in
the muscle signal. Moreover, the work performed in [11] did not consider noise mitigation
of the design low-cost sensor. The techniques adopted in our study were able to minimize
the noise in the low-cost sensor for a better signal-to-noise ratio in the validation process.
The limitation of our design is the use of wet electrodes for the low-cost sensor. It is not
always suitable to use wet electrodes in real-life applications. In future testing, we would
include dry electrodes [20] and semi-dry electrodes [21] to improve the efficiency of our
design. Conclusively, our developed system offers a reliable method for measuring muscle
signal activity and is also suitable for determining muscle fatigue.

5. Conclusions

In this study, we tested the validity of our design low-cost EMG sensor (MyoTracker)
against a commercial Delsys system. The main idea was to explore the viability of our low-
cost design EMG sensor as an alternative to expensive commercial systems. Spearman’s
correlation and intra-class correlation were used as the validation indicators to test for
the reliability of the designed system. The validation indicators showed good to excellent
reliability of the low-cost EMG sensor for measuring muscle activity. In general, comparing
our study to other previous works, we validated a newly portable low-cost EMG sensor for
measuring muscle signal. The design system is also suitable for fatigue muscle assessment
in a maximum voluntary contraction. With regards to the practical implication of the design
system, we illustrated that our designed low-cost EMG sensor is quite promising for clinical
implementation. In future works, our proposed design could be fabricated in a laboratory
with further testing to ensure that it meets all the required specifications and standards
of a commercial system. We estimated that our proposed design could be fabricated and
commercialized for approximately $400. Factors that will account for the cost include profit
margin, advertising, transportation and presentation. This could then be used for sport
science, physiotherapy, and clinical rehabilitation.
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